未曉妃
安科瑞電氣股份有限公司 上海嘉定 201801
電動汽車以無序充電方式接入配電網時與網內基礎用電負荷疊加,會形成峰上加峰的現象,不利于配電網的穩定運行。針對上述問題,首先對私家車充電負荷進行建模,采用蒙特卡羅抽樣模擬電動汽車無序行為下的充電負荷曲線。然后提出一種新型的多時段動態充電價格機制,引導車主有序充電,并以配電網負荷波動比較小為目標函數,優化電動汽車充電行為。比較后在IEEEE3節點配電網中,分別分析有序和無序充電負荷并網時電動汽車充電費用、配電網電壓偏移率及網損,結果表明所提策略可有效兼顧用戶利益和配電網的穩定運行。
1私家車無序模式充電模型
本文從以下4個方面構建電動汽車的充電模型。a?電動汽車電池特性本文選用鋰電池為研究對象。與普通汽車相同,不同類型私家車電池容量有差異。
式中fQ為私家車鋰電池容量的概率密度;x表示該時刻的電池容量大小,一般取值為20-30kwh。鋰電池充電變化過程如圖1所示。由于充電起始過程和結束過程的時間非常短暫,可以近似地認為鋰電池充電是恒功率充電。b?車主日行駛里程本文引用美國交通部汽車日出行數據進行分析
計算[13],可知電動汽車車主每日用車行駛里程數的概率密度函數為
式中:fD為車主日行駛里程的概率密度函數;μD為期望值;σD為標準差。c?車主比較后歸程時刻假設車主每日結束行程時刻即為電動汽車每日開始充電時刻,比較后歸程概率密度函數為
式中:fs為車主比較后規程的概率密度函數;w為回家時刻;μs為期望值;σs為標準差。d?車主離家時間假設車主每日用車期間只可放電不可充電,出行開始時刻的概率密度函數為
式中:fe為車主啟程離家的概率密度函數;v為離家時刻。結合用戶出行數據及電動汽車充電模型利用蒙特卡洛算法,得到500輛電動汽車的24h無序充電負荷曲線,如圖2所示。
2多時段動態電價下電動汽車有序充電模型
2.1多時段動態電價區間劃分
傳統的分時電價一旦制定后其區間不再變化,但居民的用電行為會隨著季節變化、地域不同和個人舒適度而改變,與原分時電價的價格區間范圍有偏差,產生負荷和電價的峰谷不匹配的現象。而電動汽車的充電行為在時間上有很大隨機性,導致實時電價的制定考慮因素十分復雜。因此本文根據短期負荷預測為基礎提出一種新型的多時段動態電價策略。目前為止,隸屬度函數是對傳統用電價格進行劃分的比較成熟且通用性比較廣的方法。以表1某地區分時電價為例,首先基于模糊數學的理論,可將每個時間段認為是一個獨立的模糊集合,然后利用隸屬度函數構建時段內每時刻對應的隸屬度,并根據隸屬度值將其劃分到對應的時間段[14]。再將短期預測的基礎負荷劃分成多時段,根據每時段對應的負荷值計算相對應的電價。
式中:Cmax和Cmin分別為分時電價的峰值與谷值;C∗為每時段負荷在價格區間上的映射。
式中:Ci為基準。
2.2電動汽車有序充電策略
電動汽車聚合商是專門針對電動汽車充電進行資源整合的參與者,其部署的智能充電樁可提供常規充電模式和充電優化模式。常規充電模式可將電動汽車的電池充至期望電量值,而優化模式則需要根據車主個人用電需求輸入結束充電時刻及結束時刻的充電期望值。車輛接入后,充電樁將獲取該車信息,將輸入值及車電池的剩余電量反饋到系統調度中間,對收集的數據進行在線智能計算,形成電動汽車的充電計劃。
2.3目標函數
本文以網內負荷波動比較小為目標函數。
式中:F為目標函數;N為谷時段數目;Pi為第i個時段配電網的基礎負荷值。
2.4約束條件
Bu充電時段T約束Ts≤T≤Te(12)式中:Ts為車主每日充電開始時刻;Te為當天充電結束時刻。c?總電量S約束本文優化中不計電池損耗,假設電池容量為恒定值。
式中:K為充電的電動汽車數目;Tchi為第i輛車總充電時間。
2.5算法求解
傳統的遺傳算法是一種起源于生物進化規律演變的尋優算法。從任意初始種群開始,通過選擇、交叉、變異等環節,產生一些對環境適應度高的個體并進入搜索空間中更好的區域,不斷繁衍進化,比較終得到比較大適應度的個體作為比較優解輸出。但由于進化過程中交叉概率參數及變異概率參數為定值,忽略了進化過程中種群的自適應特性,存在過早收斂的缺陷。且算法沒有保留精英機制,適應度高的個體可能在進化中丟失好的*因。為了解決以上問題,本文采用自適應交叉概率Kc和自適應變異概率Km以及精英保留機制進行優化求解[15]。自適應交叉概率Kc和自適應變異概率Km公式如下:
式中:K1為基礎交叉概率;fmax為個體比較大適應度;fav為個體適應度值的平均值;fl為每相鄰交叉個體中較大的適應度。
式中:K2為基礎變異概率;fi為第I代進化的閾值,公式如下:
式中:fiI為第i個個體;Keep=1,則精英保留,Keep=0,則不保留。優化過程如圖4。
3算例仿真與分析
3.1仿真場景設定
本文仿真過程選擇在IEEE33節點配電網中進行,其拓撲如圖5所示。假設節點1為平衡節點,即電源接入節點,余下32個節點全部為PQ節點。假設整個配電網系統中含基礎負荷以及1500輛電動汽車,車群被均勻分配到節點19,23和26中。以私家車比亞迪E1車型作為研究對象,規定每輛電動汽車的動力電池規格相同,參數為:220V,16A慢充模式,限制容量為35KWH,3.52KWH恒功率充電,充電效率為0.82,轉換效率為0.90
3.2對用電負荷的分析
電動汽車以不同方式充電的負荷曲線及配電網總負荷曲線如圖6、圖7所示。由圖6和圖7可知,通過動態價格的引導,電動汽車充電行為趨于有序化,車主對充電時間段的選擇逐漸向夜間轉移,負荷峰值水平大幅度下降,說明新型電價的提出可以使車主的用電行為不再大面積集中,系統總用電負荷曲線相對變得平緩,有削峰填谷的效果。
由表2可知,無序充電車主日繳納電費為21880.8元,基于多時段動態電價的有序充電日繳費為17248.80元,比無序充電費用降低了21.17%。因此新電價機制的提出可有效降低車主充電成本。
3.3對配電網影響分析
將IEEE33節點配電網模型的節點負荷參數和優化后的有序充電負荷數據導入MATLAB軟件語言編程,對比以下3種場景下的配電網電壓偏移及網損。場景1:配電網內未接入電動汽車負荷。場景2:配電網內接入無序充電負荷。場景3:配電網內接入有序充電負荷。圖8表示部分時段下3種用電方式的網損率。可見18.00-24.00由于無序充電負荷的接入使得網內網損明顯升高。原因是車主歸程后的無序充電行為與用戶基礎用電行為的一致性導致網內用電功率激增。09.00-21.00時,對比接入無序充電負荷和有序充電負荷,后者可有效降低配電網網損,尤其在電價高峰時段21.00網損率下降了2.77%,效果比較顯著。說明多時段分時電價的提出引導車主有序充電對調節配電網網損具有一定效果。
由圖9可知,場景1配電網未接入充電負荷時的電壓偏移都控制在±7%以內,縱橫對比沒有發現嚴重的電壓偏移現象,但是節點18和19在20.00-21.00時間段上有局部節點處在越限邊界。由圖10可知,場景2中配電網內接入無序充電負荷時,節點13-19和28-33在晚間出現電壓越限情況,原因是無序充電負荷的高峰期恰巧與網內基礎負荷用電的高峰期時段相疊。
圖11表示場景3下配電網內接入有序充電負荷時各個節點電壓的偏移情況。與圖9和圖10對比可知,有序充電負荷的接入使局部節點越限現象得到*解,偏移的電壓回歸到正常標準范圍內。說明所提出的新型動態分時電價可以通過對電動汽車進行充電有序化管理來改*配電網電壓偏移現象。
由于大量負荷突然接入使各節點電壓發生偏移現象,因此對比較大負載量時刻(21.00)各節點電壓偏移情況進行對比更有意義,結果如圖12所示。
由圖12可知,未接入無序負荷時網內各節點的電壓偏移都控制在±7%范圍以內,電壓無越限行為。當無序充電負荷并網后,一部分節點電壓發生顯著偏移,且偏移量均超過規定標準范圍。而經過多時段動態電價策略調控的有序充電行為接入配電網后,網內各節點電壓值還原到標準范圍以內,其中變化比較顯著的18號節點電壓標幺值由0.9467調整到0.9828,電壓偏移率修正了3.61%。
4安科瑞充電樁收費運營云平臺
4.1概述
AcrelCloud-9000安科瑞充電柱收費運營云平臺系統通過物聯網技術對接入系統的電動電動自行車充電站以及各個充電整法行不間斷地數據采集和監控,實時監控充電樁運行狀態,進行充電服務、支付管理,交易結算,資要管理、電能管理,明細查詢等。同時對充電機過溫保護、漏電、充電機輸入/輸出過壓,欠壓,絕緣低各類故障進行預警;充電樁支持以太網、4G或WIFI等方式接入互聯網,用戶通過微信、支付寶,云閃付掃碼充電。
4.2應用場所
適用于民用建筑、一般工業建筑、居住小區、實業單位、商業綜合體、學校、園區等充電樁模式的充電基礎設施設計。
4.3系統結構
4.3.1系統分為四層:
1)即數據采集層、網絡傳輸層、數據中間層和客戶端層。
2)數據采集層:包括電瓶車智能充電樁通訊協議為標準modbus-rtu。電瓶車智能充電樁用于采集充電回路的電力參數,并進行電能計量和保護。
3)網絡傳輸層:通過4G網絡將數據上傳至搭建好的數據庫服務器。
4)數據中間層:包含應用服務器和數據服務器,應用服務器部署數據采集服務、WEB網站,數據服務器部署實時數據庫、歷史數據庫、基礎數據庫。
5)應客戶端層:系統管理員可在瀏覽器中訪問電瓶車充電樁收費平臺。終端充電用戶通過刷卡掃碼的方式啟動充電。
小區充電平臺功能主要涵蓋充電設施智能化大屏、實時監控、交易管理、故障管理、統計分析、基礎數據管理等功能,同時為運維人員提供運維APP,充電用戶提供充電小程序。
4.4安科瑞充電樁云平臺系統功能
4.4.1智能化大屏
智能化大屏展示站點分布情況,對設備狀態、設備使用率、充電次數、充電時長、充電金額、充電度數、充電樁故障等進行統計顯示,同時可查看每個站點的站點信息、充電樁列表、充電記錄、收益、能耗、故障記錄等。統一管理小區充電樁,查看設備使用率,合理分配資源。
4.4.2.實時監控
實時監視充電設施運行狀況,主要包括充電樁運行狀態、回路狀態、充電過程中的充電電量、充電電壓/電流,充電樁告警信息等。
4.4.3交易管理
平臺管理人員可管理充電用戶賬戶,對其進行賬戶進行充值、退款、凍結、注銷等操作,可查看小區用戶每日的充電交易詳細信息。
4.4.4故障管理
設備自動上報故障信息,平臺管理人員可通過平臺查看故障信息并進行派發處理,同時運維人員可通過運維APP收取故障推送,運維人員在運維工作完成后將結果上報。充電用戶也可通過充電小程序反饋現場問題。
4.4.5統計分析
通過系統平臺,從充電站點、充電設施、、充電時間、充電方式等不同角度,查詢充電交易統計信息、能耗統計信息等。
4.4.6基礎數據管理
在系統平臺建立運營商戶,運營商可建立和管理其運營所需站點和充電設施,維護充電設施信息、價格策略、折扣、優惠活動,同時可管理在線卡用戶充值、凍結和解綁。
4.4.7運維APP
面向運維人員使用,可以對站點和充電樁進行管理、能夠進行故障閉環處理、查詢流量卡使用情況、查詢充電\充值情況,進行遠程參數設置,同時可接收故障推送。
4.4.8充電小程序
面向充電用戶使用,可查看附近空閑設備,主要包含掃碼充電、賬戶充值,充電卡綁定、交易查詢、故障申訴等功能。
4.5系統硬件配置
5結語
本文基于分時電價與短期負荷預測提出了一種新型多時段動態充電價格機制,引導車主規劃用車安排,使充電行為由無序變為有序。建立以配電網內負荷波動比較小為目標函數,利用MATLAB軟件進行算法編程,結果表明所提出的多時段動態電價策略可減小網內的負荷波動,有明顯的削峰填谷作用,為車主減少21.17%的充電成本。此外還有效降低了21.00用電高峰期2.77%的網損率并修正18號節點3.61%的電壓偏移率,實現了保證車主充電利益與提高配電網運行安全的并存。
掃一掃 微信咨詢
©2024 安科瑞電子商務(上海)有限公司 版權所有 備案號:滬ICP備18001305號-12 技術支持:智慧城市網 sitemap.xml 總訪問量:261558 管理登陸